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Abstract. We obtain explicit analytical expressions for the quadrature variances and the photon
distribution functions of the electromagnetic field modes excited from vacuum or thermal states due
to the non-stationary Casimir effect in an ideal one-dimensional Fabry–Perot cavity with vibrating
walls, provided the frequency of vibrations is close to a multiple frequency of the fundamental
unperturbed electromagnetic mode.

1. Introduction

During the last decade, the attention of many authors was attracted to quantum phenomena in
cavities and media with moving boundaries, known under the namesnon-stationary Casimir
effect(NSCE) [1],dynamical Casimir effect[2], or mirror (motion) induced radiation[3, 4].
For the most recent achievements in this field and references to other works see, e.g., [5–23]
(the problems of theclassicalelectrodynamics with moving boundaries are studied in [24,25]).
A complete analytical solution to the problem of a one-dimensional (1D) (Fabry–Perot) ideal
cavity withresonantly vibratingboundaries was found recently in [17]. This solution holds for
any moment of time (provided the amplitude of the wall vibrations is small enough); moreover,
it enables us not only to calculate the number of photons created from an arbitrary initial state,
but also to account for the effects of detuning from a strict resonance.

In the present paper, continuing the line of research of [17], we calculate the effects
of squeezingand find thephoton distribution functionof the field in each mode inside the
cavity. Although a possibility of squeezing the electromagnetic field in a cavity with moving
boundaries due to the NSCE was discussed for the first time nine years ago [26], the concrete
calculations of the variances of the field quadrature components were made only in the short-
time [26,27] and long-time [28,29] limits under the condition ofstrict resonance. As for the
photon statistics in an oscillating Fabry–Perot cavity, that has not been discussed at all until
now (the photon distribution in a 3D nondegenerate resonantly driven cavity was found in [5]).

2. Field operator in a 1D cavity with oscillating boundaries

We start with a brief description of the main results of [17] which are used in the subsequent
sections. Following the model of a ‘scalar electrodynamics’ [30], we assume that a 1D cavity
is formed by two infinite ideal plates whose positions are given byxlef t ≡ 0 and

xright ≡ L(t) = L0(1 + ε sin[pω1(1 + δ)t ]) |ε| � 1 |δ| � 1 (2.1)
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whereω1 = πc/L0 andp = 1, 2, . . . . As was shown in [17], the results can be easily
generalized to a generic case when both the mirrors oscillate (see also [11, 22]). We are
looking for the only component of the operator vector potential of the electromagnetic field
Â(x, t) in the Heisenberg representationin the form (hereafterc = h̄ = 1)

Â(x, t) =
∞∑
n=1

2√
n

[b̂nψ
(n)(x, t) + h.c.] [b̂n, b̂

†
k ] = δnk. (2.2)

This operator must satisfy the wave equationÂtt − Âxx = 0 and the boundary conditions [30]
Â(0, t) = Â(L(t), t) = 0. Fort < 0, when the wall is assumed to be at rest, functionψ(n)(x, t)

has a simple factorized formψ(n)
0 (x, t) = e−iωnt sin(πnx/L0), ωn = nω1. The normalization

factors 2/
√
n in (2.2) are chosen in such a way that the energy of the field in the stationary case

can be represented as a sum of energies of independent mode oscillators (see the next section).
For t > 0, following [31] we expand each functionψ(n)(x, t) in a series with respect to

the instantaneous basis

ψ(n)(x, t) =
√
L0

L(t)

∞∑
k=1

Q
(n)
k (t) sin

[
πkx

L(t)

]
. (2.3)

In this way we automatically satisfy the boundary conditions. Then the wave equation is
replaced by the infinite set of coupled differential equations

Q̈
(n)
k + ω2

k(t)Q
(n)
k = 2

∞∑
j=1

gkj (t)Q̇
(n)
j +

∞∑
j=1

ġkj (t)Q
(n)
j +O

(
g2
kj

)
(2.4)

where

ωk(t) = kπ/L(t) gkj = −gjk = (−1)k−j
2kjL̇(t)

(j2 − k2)L(t)
.

As was shown in [17], the set of equations (2.4) can be significantly simplified in the case of
the (quasi)resonance oscillations of the wall given by the dependence (2.1) if one writes

Q
(n)
k (t) = ρ(n)k e−iωk(1+δ)t − ρ(n)−keiωk(1+δ)t (2.5)

assuming the coefficientsρ(n)k (k = ±1,±2, . . . ; n = 1, 2, . . .) to be slowly varying functions
of time, whose derivatives are proportional to the small parameterε. Putting (2.5) into
equation (2.4) and neglecting the second-order terms like ¨ρ

(n)
k ∼ ε2, one obtains, after averaging

over fast oscillations with the multiple frequencies ofω1, the equations [17]

d

dτ
ρ
(n)
k = σ [(k + p)ρ(n)k+p − (k − p)ρ(n)k−p] + 2iγ kρ(n)k (2.6)

whereγ ≡ δ/ε, σ ≡ (−1)p, andτ = 1
2εω1t is the ‘slow time’. The exact solutions to

equation (2.4) differ from the approximate form (2.5) by the terms proportional to the higher
harmonics exp[±irωkt ], r = 2, 3, . . . . However, the magnitudes of the corrections are of the
order ofε (or less), so they can be neglected, at least under the conditiont � t2 ∼ (ω1ε

2)−1.
For the valuesω1 ∼ 1010 s−1 and ε ∼ 10−8 corresponding to the possible experimental
realizations [5] the limiting timet2 is of the order of weeks.

Due to the initial conditionsρ(n)k (0) = δkn the solutions to (2.6) satisfy the relation
ρ
(k+np)
j+mp ≡ 0 if j 6= k. The nonzero coefficientsρ(n)m read [17]

ρ
(j+np)
j+mp (τ) =

0(1 +n + j/p)(σκ)n−mλm+n+2j/p

0(1 +m + j/p)0(1 +n−m) F(n + j/p,−m− j/p; 1 +n−m; κ2)

(2.7)
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whereF(a, b; c; z) is the Gauss hypergeometric function,

κ = sinh(apτ)√
a2 + sinh2(apτ)

a =
√

1− γ 2 λ =
√

1− γ 2κ2 + iγ κ. (2.8)

The functions (2.7) areexactsolutions to the set of equations (2.6) relating the coefficients
with different lower indices. Besides, these functions satisfy another set of equations, which
can be treated as recurrence relations with respect to theupper indices [17]:

d

dτ
ρ(n)m = n{σ [ρ(n−p)m − ρ(n+p)

m ] + 2iγρ(n)m } n > p ρ(0)m ≡ 0 (2.9)

d

dτ
ρ(n)m = n{σ [ρ(p−n)∗−m − ρ(p+n)

m ] + 2iγρ(n)m } n = 1, 2, . . . , p − 1. (2.10)

The consequences of equations (2.6), (2.9) and (2.10) are the identities
∞∑

m=−∞
mρ(n)∗m ρ(k)m = nδnk n, k = 1, 2, . . . (2.11)

∞∑
n=1

m

n
[ρ(n)∗m ρ

(n)
j − ρ(n)∗−m ρ(n)−j ] = δmj m, j = 1, 2, . . . (2.12)

∞∑
n=1

1

n
[ρ(n)∗m ρ

(n)
−j − ρ(n)∗j ρ

(n)
−m] = 0 m, j = 1, 2, . . . . (2.13)

The formulae given above hold for any value of the detuning parameterγ . Forγ > 1 one
should replace the functions sinh(ax)/a and cosh(ax) by their trigonometrical counterparts
sin(ãx)/ã and cos(ãx), whereã =

√
γ 2 − 1.

3. Squeezing the initial vacuum

We suppose that after some interval of timeT the wall comes back to its initial positionL0.
For t > T , the field operator assumes the form

Â(x, t) =
∞∑
n=1

2√
n

sin(πnx/L0)[âne
−iωn(t+δT ) + h.c.] (3.1)

where operatorŝam are related to the initial operatorsb̂n andb̂†
n by means of the Bogoliubov

transformation (τT ≡ 1
2εω1T )

âm =
∞∑
n=1

√
m

n
[b̂nρ

(n)
m (τT )− b̂†

nρ
(n)∗
−m (τT )] m = 1, 2, . . . . (3.2)

The commutation relations [ân, â
†
k ] = δnk hold due to the identities (2.11)–(2.13) which are

nothing but theunitarity conditionsof the transformation (3.2). These commutation relations
together with the expression for the energy of the field

Ĥ ≡ 1

8π

∫ L0

0
dx

(∂Â
∂t

)2

+

(
∂Â

∂x

)2
 = ∞∑

n=1

ωn

(
â†
nân +

1

2

)
(3.3)

convince us that namelŷan andâ†
n are true photon annihilation and creation operators att > T

(just as the operatorŝbn andb̂†
n were ‘physical’ ones att < 0).

Now we introduce the Hermitian quadrature component operators

q̂m = (âm + â†
m)/
√

2 p̂m = (âm − â†
m)/(i
√

2)
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and calculate their variancesUm = 〈q̂2
m〉 − 〈q̂m〉2, Vm = 〈p̂2

m〉 − 〈p̂m〉2 and the covariance
Ym = 1

2〈p̂mq̂m+ q̂mp̂m〉−〈p̂m〉〈q̂m〉 in the vacuum statewith respect to the initial operatorŝbn:

b̂n|0〉 = 0 (remember that we use the Heisenberg picture). Using (3.2) we obtain (assuming
hereafterω1 = 1)

Um = m

2

∞∑
n=1

1

n
|ρ(n)m − ρ(n)−m|2 Vm = m

2

∞∑
n=1

1

n
|ρ(n)m + ρ(n)−m|2 (3.4)

Ym =
∞∑
n=1

m

n
Im [ρ(n)∗m ρ

(n)
−m] (3.5)

where the coefficientsρ(n)±m should be taken at the momentT , thus their argument isτT .
Strictly speaking, the expressions (3.4), (3.5) have physical meanings at those moments of
timeT when the wall returns to its initial position, i.e. forT = Nπ/[p(1 +δ)] with an integer
N . Consequently, the argumentτT of the coefficientsρ(n)±m in (3.4), (3.5) assumes discrete
valuesτ (N) = Nεπ/[2p(1 + δ)]. One should remember, however, that something interesting
in our problem happens for the valuesτ ∼ 1 (or larger). ThenN ∼ ε−1� 1, and the minimal
increment1τ ∼ ε is so small thatτT can be considered as a continuous variable (under the
realistic conditions,ε 6 10−8 [5]). For this reason, we omit hereafter the subscriptT , writing
simply τ instead ofτT or τ (N).

Differentiating the right-hand sides of equations (3.4) and (3.5) with respect to the ‘slow
time’ τ , one can remove the fraction 1/n with the aid of the recurrence relations (2.9) and
(2.10). After that, changing if necessary the summation indexn to n± p, one can verify that
almost all terms in the right-hand sides are cancelled, and the infinite series are reduced to the
finite sums:

dUm/dτ
dVm/dτ

}
= σm

p−1∑
n=1

Re([ρ(p−n)m ∓ ρ(p−n)−m ][ρ(n)−m ∓ ρ(n)m ])

dYm/dτ = σm
p−1∑
n=1

Im (ρ(n)∗m ρ(p−n)∗m + ρ(n)−mρ
(p−n)
−m ).

Now one should take into account the structure of the coefficientsρ(n)m (2.7): they are different
from zero provided the difference between the upper indexn and the lower onem is some
multiple of the numberp. If m = j + pk with j = 1, . . . , p − 1 andk = 0, 1, 2, . . . , then
only the terms withn = j or n = p − j survive in the sums above. Depending on whether
j = p/2 or j 6= p/2, we obtain two different sets of explicit expressions for the derivatives
of the (co)variances.

(1) If m = j + pk but j 6= p/2 (in particular, for alloddvalues ofp), then
dUm
dτ
= dVm

dτ
= 2σmRe(ρ(j)m ρ

(p−j)
−m )

dYm
dτ
= 0. (3.6)

In this caseYm ≡ 0 andUm = Vm = Nm+ 1
2, whereNm is the mean number of photons created

from vacuum in themth mode calculated in [17], so there is no squeezing. Forγ 6 1 the
quadrature variances monotonously increase in time, with an asymptotical linear dependence.
If γ > 1, the variances oscillate in time with amplitudes inversly proportional toγ 2−1, always
being no less than12.

(2) Some squeezing can be achieved only in the ‘principal’ modes with the numbers
µ = p(k + 1

2), k = 0, 1, 2, . . . :
dUµ
dτ
= −µRe([ρ(p/2)µ − ρ(p/2)−µ ]2)

dVµ
dτ
= µRe([ρ(p/2)µ + ρ(p/2)−µ ]2) (3.7)

dYµ/dτ = µIm ([ρ(p/2)∗µ ]2 + [ρ(p/2)−µ ]2) (3.8)
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(in particular, it is necessary thatp be anevennumber). In the strict resonance case (γ = 0) all
the coefficientsρ(p/2)µ are real, soYµ = 0 and dUµ/dτ 6 0 in the whole interval 06 τ <∞,
resulting in the inequalityUµ(τ) < 1

2.

Note that the coefficientsρ(pn+p/2)
pm+p/2 depend on the parameterp only through the dependence

of the the variableκ on the productpτ : see equation (2.8) and the explicit form of these
coefficients in appendix A. Thus it is sufficient to consider the most important special case
of the parametric resonance at thedoublefundamental frequency 2ω1 (i.e.p = 2), since the
formulae forp > 2 can be obtained by a simple rescaling of the ‘slow time’ (for the ‘principal’
modes). In this case, only the odd modes can be excited from the vacuum, and they do exhibit
some squeezing.

Using equations (3.7) and (3.8) one can immediately find the Taylor expansions of the
(co)variances atτ → 0 (assuming(−1)!! ≡ 1):

U2m+1

V2m+1

}
= 1

2
∓ τ 2m+1

[
(2m− 1)!!

m!

]2 [
1∓ 2m + 1

(m + 1)2
τ +O(τ 2)

]
(3.9)

Y2m+1 = −2γ (2m + 1)τ 2(m+1)

[
(2m− 1)!!

m!

]2

+ · · · . (3.10)

We see that theU -variances are always less than1
2 at the initial stage, but the degree of their

squeezing rapidly decreases with increase of the numberm. Note that the dependence on the
detuning parameterγ in the short-time limit appears only in terms of the order ofτ 2m+3 (and
higher).

In the opposite limitτ →∞ (or κ → 1), using equations (3.7), (3.8) and the asymptotics
of the Bogoliubov coefficients (A.4) we obtainconstanttime derivatives

dU2m+1/dτ |τ→∞ = 16a

π2(2m + 1)
sin2

[(
m +

1

2

)
φ

]
(3.11)

dV2m+1/dτ |τ→∞ = 16a

π2(2m + 1)
cos2

[(
m +

1

2

)
φ

]
(3.12)

dY2m+1/dτ |τ→∞ = − 8a

π2(2m + 1)
sin[(2m + 1) φ] (3.13)

whereφ ≡ arcsinγ . Consequently, all the (co)variances increase with time linearly, giving
the constant photon generation rate in the ‘principal’ (odd) modes

dN2m+1/dτ |τ→∞ = 8a

π2(2m + 1)
(3.14)

in agreement with [17]. Equation (3.14) results in a simple estimation of the mean photon
number in theµth mode atτ > 1: Nµ(τ) ≈ aτ/µ.

Since the covarianceYµ is different from zero ifγ 6= 0, the initial vacuum state of the
field is transformed to thecorrelatedquantum state [32,33]. One should remember, however,
that the values ofUµ, Vµ andYµ yield the (co)variances of the field quadratures only at the
momentt = T (when the wall stopped to oscillate). At the subsequent moments of time
the quadrature variances exhibit fast oscillations with twice the frequency of the mode. For
example (omitting the mode index),

σq(t
′) = U cos2(ωt ′) + V sin2(ωt ′) + Y sin(2ωt ′) t ′ = t − T .

Therefore, the physical meanings have not the valuesUµ, Vµ andYµ themselves, but rather
theminimalσmin ≡ uµ andmaximalσmax ≡ vµ values of the quadrature variances during the
period of fast oscillations [34]

uµ
vµ

}
= 1

2

(
Uµ + Vµ ∓

√
(Uµ − Vµ)2 + 4Y 2

µ

)
. (3.15)
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But in the special case of the strict resonance (γ = 0) we haveuµ = Uµ andvµ = Vµ.
The equations (3.7) and (3.8) can be integrated for any values ofµ andγ in terms of

the complete elliptic integralsK(κ) andE(κ): see appendix B for the technical details. In
particular, for the fundamental mode we find

U1 = 2

π2κ
[κ̃2(β − κ)K2(κ)− 2(β − κ)K(κ)E(κ) + βE2(κ)]

V1 = 2

π2κ
[2(β + κ)K(κ)E(κ)− κ̃2(β + κ)K2(κ)− βE2(κ)]

Y1 = 2γ

π2
[κ̃2K2(κ)− 2K(κ)E(κ) +E2(κ)]

whereβ = Reλ =
√

1− γ 2κ2 andκ̃ ≡ √1− κ2. Then equation (3.15) yields the minimal
and maximal invariant variances

u1 = 2

π2κ
[κ̃2(1− κ)K2(κ)− 2(1− κ)K(κ)E(κ) +E2(κ)] (3.16)

v1 = 2

π2κ
[2(1 +κ)K(κ)E(κ)− κ̃2(1 +κ)K2(κ)−E2(κ)] (3.17)

which depend on the detuning parameterγ only implicitly, through the dependence onγ of the
functionκ(τ) (2.8). In the short-time limitτ � 1 (thenκ ≈ 2τ ) we obtain, using the Taylor
expansions of the complete elliptic integrals,u1 = 1

2 − τ + τ 2 + · · · andv1 = 1
2 + τ + τ 2 + · · ·

in accordance with [26]. More precisely,

u1

v1

}
= 1

2(1∓ κ + 1
2κ

2 ∓ 1
4κ

3 + 7
32κ

4 + · · ·).

The minimal varianceu1 monotonously decreases from the value1
2 at t = 0 to the constant

asymptotical value 2/π2 at τ � 1, confirming qualitatively the evaluations of [28, 29] and
giving almost 50% squeezing in the initial vacuum state. The variance of the conjugate
quadrature monotonously increases, and forτ � 1 it becomes a practically linear function of
time: v1(τ � 1) ≈ 16τ/π2. The asymptotical minimal valueu1(τ = ∞) does not depend
on γ providedγ 6 1 (only the rate of reaching this asymptotical value decreases withγ as√

1− γ 2). In the strongly detuned case,γ > 1, the minimal variance oscillates as a function
of τ (being always greater than 2/π2), since in this case the functionκ(τ) oscillates between
−γ−1 andγ−1.

The minimal variance does not go to zero whenτ → ∞ due to thestrong intermode
interaction, which results in a high degree ofquantum mixingfor each mode. Since the state
originating from the initial vacuum state belongs to the class ofGaussianstates (see section 5),
the quantum ‘purity’χm ≡ Tr ρ̂2

m of themth field mode (described by means of the density
matrix ρ̂m) can be expressed in terms of the (co)variances as [35]χm = [4(UmVm − Y 2

m)]
−1/2.

Using equations (3.11)–(3.13) one can check thatχ ∼ τ−1/2→ 0 for τ � 1 (see appendix C).
For instance, form = 1 we have (writing simplyK andE instead ofK(κ) andE(κ))

χ1 = π2

4
κ[4KE3 + 4κ̃4K3E − 6κ̃2K2E2 −E4 − κ̃6K4]−1/2. (3.18)

The initial dependence onκ is rather weak:χ(κ � 1) = 1− 3
32κ

4 + · · ·. But whenκ → 1,χ
rapidly goes to zero:χ(κ̃ � 1) ≈ (8/π2)[ln(4/κ̃)]−1/2, with dχ/dκ →−∞.

It is worth mentioning that in the resonance case there is no effective interaction between
different modes of anondegenerate(3D) cavity possessing a nonequidistant eigenmode
spectrum. In such a cavity the minimal variance asymptotically goes to zero forτ →∞ [5,15].
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For the sake of completeness we introduce the formulae (found in [17]) for the mean
photon number in the fundamental mode and the total energy of photons created in all the
modes (for the initial vacuum state):

N1(κ) = 2

π2
K(κ)

[
2E(κ)− κ̃2K(κ)

]− 1

2
(3.19)

Etot (τ ) = p2 − 1

12a2
sinh2(paτ). (3.20)

In [17] the formula for the second derivative of the total mean number of photons created from
vacuum in all the modes was also derived:

d2Ntot
dτ 2

= 8

π2κ2
[κ̃4K2 − 2κ̃2KE + (1 +κ2 − 2γ 2κ4)E2]. (3.21)

Now we are able to integrate this equation. Taking into account the condition [17] dN /dτ = 0
at τ = 0 we obtain the very simple expression

Ntot = 2

π2
K(κ)[K(κ)−E(κ)]. (3.22)

The expressions for the variances in the modes with numbersµ > 3 are rather involved;
their general structure is discussed in appendix B. Here we give only one explicit example—the
varianceU3 for γ = 0:

U3 = 2

9π2κ3
[κ̃2(1− κ)(4 + 10κ + 9κ2)K2(κ)

+(1− κ)(4κ3− 14κ2 − 20κ − 8)K(κ)E(κ)

+(4κ4 + 6κ3− κ2 + 6κ + 4)E2(κ)]. (3.23)

The Taylor expansion of the right-hand side of (3.23) coincides with the expansion (3.9). The
asymptotical value atτ → ∞ equalsU3(κ = 1) = 38/(9π2) ≈ 0.43. We see that the
squeezing rapidly disappears with increase of the mode numberµ.

The varianceV3 can be obtained from (3.23) by means of a simple substitutionκ →−κ.
Therefore the mean number of photons in the third mode is given by

N3 = 2

3π2κ2
[(3κ2 − 2)K(2E − κ̃2K) + 2(1 +κ2)E2] − 1

2
. (3.24)

It is remarkable that despite all three (co)variancesUµ, Vµ andYµ linearly increasing with
time atτ � 1 in the generic caseγ 6= 0, theminimal varianceuµ tends to aconstantvalue at
τ →∞: see appendix C.

The results of this section confirm completely the earlier conclusions [26] concerning the
behaviour of the quadrature variances in the short-time limit forp = 2, as well as the results of
approximate numerical calculations performed in [27] (in the same limit) forp = 2 andp = 3.
In the long-time limit we see aqualitativeagreement with earlier approximate asymptotical
formulae of [28, 29] related to the behaviour of the squeezed quadrature component variance
(for γ = 0): namely, that the squeezing effect is strongest for the lowest mode and that
it decreases with an increase of the mode number. However, there are differences in the
numerical values of the squeezed variances. This can be explained as follows. In [28, 29]
only theleading termsof the Bogoliubov coefficients (analogues of the coefficientsρ(n)m ) were
found. But the coefficientsρ(n)m (κ) andρ(n)−m(κ) become the same in the limitκ = 1 (if λ = 1)
and they do not depend on the upper indexn: see appendix A. For this reason, although the
leading terms of the asymptotic expansions enable us to calculate correctly the number of
photons and theunsqueezedvariances likeV2m+1, these terms arecancelledin the expressions
for thesqueezedvariances likeU2m+1 (if γ = 0). It was found in [28, 29] that the difference
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1m ≡ 1
2 − U2m+1(τ → ∞) decreases as 1/(2m + 1) for m � 1. The numerical integration

of equation (3.7) yields for the product(2m + 1)1m the values close to 0.2 for 1 6 m 6 5
(according to (3.23), 311 = 0.2166. . .). It seems probable that the limit value of this product
at m → ∞ equals 2/π2 = 0.2026. . . , but we did not succeed in proving this conjecture
analytically.

4. Influence of initial conditions

For an arbitrary initial state of the field one can writeUm = U(vac)
m +1Um, whereU(vac)

m is
given by equation (3.4); similar expressions can be written forVm andYm. The corrections
due to the nonvacuum initial states are given by

1Um
1Vm

}
= Re

∑
n,j

m√
nj
([ρ(n)m ∓ ρ(n)−m]∗[ρ(j)m ∓ ρ(j)−m][ 〈b̂†

nb̂j 〉 − 〈b̂†
n〉〈b̂j 〉]

±[ρ(n)m ∓ ρ(n)−m][ρ(j)m ∓ ρ(j)−m][ 〈b̂nb̂j 〉 − 〈b̂n〉〈b̂j 〉]) (4.1)

1Ym = Im
∑
n,j

m√
nj
([ρ(n)∗m ρ

(j)
−m − ρ(j)m ρ

(n)∗
−m ][ 〈b̂†

nb̂j 〉 − 〈b̂†
n〉〈b̂j 〉]

+[ρ(n)m ρ(j)m − ρ(n)−mρ(j)−m][ 〈b̂nb̂j 〉 − 〈b̂n〉〈b̂j 〉]) (4.2)

where the average values like〈b̂†
nb̂j 〉 are calculated in the initial state. All the corrections

disappear in the case of the initial coherent state,b̂n|α〉 = αn|α〉. If the initial density matrix is
diagonalin the Fock basis (as happens, e.g., for the Fock or thermal states) then〈b̂†

nb̂j 〉 = νnδnj
(νn > 0), all other average values in (4.1) and (4.2) being equal to zero. In this case the double
sums are reduced to the single ones:

1Um = m
∑
n

νn

n
|ρ(n)m − ρ(n)−m|2 1Vm = m

∑
n

νn

n
|ρ(n)m + ρ(n)−m|2 (4.3)

1Ym = 2m
∑
n

νn

n
Im [ρ(n)∗m ρ

(n)
−m]. (4.4)

We see that the initial fluctuations always increase both the variancesUm andVm (for the
diagonal density matrix). However, asymptotically atτ → ∞ the corrections are bounded
for thephysicalinitial states having finite total numbers of photons, because the coefficients
|ρ(n)m ± ρ(n)−m|2 and Im [ρ(n)∗m ρ

(n)
−m] do not depend on the summation indexn in this limit: see

equations (A.6) and (A.7). Thus we have in the ‘principal’µ-modes (forp = 2;φ ≡ arcsinγ )

1U(∞)
µ

1V (∞)µ

1Y (∞)µ

 = 8Z
π2µ
×


2 sin2(µφ/2)
2 cos2(µφ/2)

− sin(µφ)

Z =
∞∑
k=0

ν2k+1

2k + 1
. (4.5)

These expressions are very similar to (3.11)–(3.13). Their consequence is the important result
that in the limitτ → ∞ the minimal varianceuµ does not dependon the initial state of the
field inside the cavity, provided the initial density matrix was diagonal in the Fock basis. The
proof is given in appendix C. The correction to the mean number of photons tends to the limit
1N (∞)

µ = 8Z/(π2µ).

5. Photon distribution

Now let us turn to thephoton distribution function(PDF)f (n) ≡ 〈n|ρ̂m(t)|n〉, where|n〉 is
the multimode Fock state,n ≡ (n1, n2, . . .), andρ̂m(t) is the time-dependent density matrix
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of themth field mode in theSchr̈odingerpicture. At first glance, there is a problem, since all
the calculations in the preceding sections were performed in the framework of theHeisenberg
picture. Fortunately, this problem can be easily resolved for a special class ofGaussian
initial states (i.e. the states whose density matrices, or wavefunctions, or Wigner functions,
are described by some Gaussian exponentials). This class includes coherent, squeezed and
thermal states; in particular, it includes the vacuum state which we are interested in here.

The solution is based on two key points. The first one is the statement [9,31] that the field
evolution in a cavity with moving boundaries can be described not only in the Heisenberg
picture, but, equivalently, in the framework of the Schrödinger picture, with aquadratic
multidimensional time-dependent Hamiltonian. The second key point is the fact [36,37] that
the evolution governed by quadratic Hamiltonians transforms any Gaussian state to another
Gaussian state.

It remains to take into account that the photon distribution function of any Gaussian state
is determined completely by the average values of quadratures and by their variances [38,39],
which obviously do not depend on the quantum mechanical representation. The explicit
formulae in the generic case are rather involved, so we give them in appendix D. Here we
confine ourselves to the most simple case of thevacuuminitial state, when all the average
values of quadratures are equal to zero. In this case the generating function (D.1) is reduced
to [G(z)]−1/2, i.e. it has the same structure as the known generating function of the Legendre
polynomialsPn(x). After some algebra we obtain the following expression for the photon
distribution in themth field mode:

fm(n) = 2[(2um − 1)(2vm − 1)]n/2

[(2um + 1)(2vm + 1)](n+1)/2
Pn

(
4umvm − 1√

(4u2
m − 1)(4v2

m − 1)

)
. (5.1)

It depends only on the invariant minimal and maximal variancesum andvm. Note that the
argument of the polynomial in (5.1) is alwaysoutsidethe ‘traditional’ interval(−1, 1) (in
particular, this argument is pure imaginary if 2um < 1), being exactly equal to one for the
‘nonprincipal’ modes withum = vm = Nm + 1

2, when formula (5.1) transforms to the time-
dependent Planck’s distribution

fm(n; τ) = N n
m(τ )

[Nm(τ) + 1]n+1
.

Only for the ‘principal’µ-modes is the spectrum of photons different from Planck’s one due
to the squeezing effect. The first and second derivatives of the generating function (D.1) at
z = 1 yield the first two moments of the photon distribution (hereafter we suppress subscript
m)

n̄ = 1
2(u + v − 1) σn ≡ n2 − (n̄)2 = 1

4(2u
2 + 2v2 − 1) (5.2)

which result in the Mandel parameter

Q ≡ σn/n̄− 1= u2 + v2 − u− v + 1
2

u + v − 1
. (5.3)

This parameter appears positive for all values ofτ , so the photon statistics is super-Poissonian,
with strong bunching of photons (the pair creation of photons in the NSCE was discussed
in [3,4,7,13]). In particular,

Q2m+1(τ → 0) ≈ [(m + 1)(2m− 1)!!/m!] 2τ 2m/(2m + 1) Q1(0) = 1

whereasQm ≈ Vm(τ)� 1 for τ � 1 (if γ � 1).
The analytical expressions obtained in the paper are illustrated in two figures. In figure 1 we

show the dependences on the universal variableκ (2.8) of the minimal and maximal variances
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Figure 1. The minimal varianceu1, the maximal variancev1, the purity factorχ , the mean photon
numberN1 and Mandel’s parameterQ of the fundamental modeµ = 1 versus the universal
parameterκ (2.8).

Figure 2. The photon distribution function in the fundamental field modeµ = 1 for τ = 5 and
γ = 0,p = 2 (points connected with solid lines). Points connected with dashed lines correspond
to the Planck distribution with the same mean photon number.

u1 (3.16) andv1 (3.17) together with the purity factorχ1 (3.18), the mean photon numberN1

(3.19) and theQ-factor (5.3) for the fundamental modeµ = 1. An example of the photon
distribution in the principal modeµ = 1 for γ = 0 is given in figure 2, where the ‘cavity’
distribution is compared with Planck’s one corresponding to the same mean photon number.
We see no oscillations typical for the pure squeezed states [40–42] (excluding a small ‘splash’
at n = 2), because the field appears in amixed quantum state (the influence of quantum
mixing on the oscillations of the PDF in generic Gaussian states was studied in [38, 39, 43]).
The asymptotics of the photon distribution function (5.1) in the long-time limit are given in
appendix D.
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6. Conclusion

The main results of the paper are as follows. We studied the behaviour of the electromagnetic
field quadrature variances in a 1D cavity with resonantly oscillating ideal boundaries in the
whole time interval 06 t < ∞ for all field modes and for any (small) value of the detuning
parameter. We have shown that each field mode goes to a mixed quantum state due to the
intermode interaction (caused by Doppler’s effect on the moving mirrors). We found that
squeezing can be observed only in the ‘principal’ modes with numbersp(k+ 1

2), where integer
p is close to the ratio of the wall vibration frequency to the frequency of the fundamental
cavity mode. Analysing the influence of the initial nonvacuum state of the field we discovered
that the initial thermal fluctuations do not affect the minimal value of the quadrature variance
(which is less than12) in the long-time limit. This result is important from the practical point of
view, since it shows that certain significant features of the nonstationary Casimir effect are not
sensitive to the temperature (see also [23] in the case of the 3D cavity). We found the photon
distribution functionsfm(n) for all modes. For the modes which do not exhibit squeezing,
the PDF coincides with a time-dependent Planck’s distribution, while the PDF in the distinct
‘principal’ modes differs from Planck’s one, being ‘flatter’ forn� 1.
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Appendix A. Some properties of the Bogoliubov coefficientsρ(n)
m

The non-zero coefficientsρ(n)µ for the ‘principal’ modes read

ρ
(pn+p/2)
pm+p/2 =

0(n + 3
2)κ

n−mλm+n+1

0(m + 3
2)0(1 +n−m)

×F(n + 1
2,−m− 1

2; 1 +n−m; κ2) n > m (A.1)

ρ
(pn+p/2)
pm+p/2 =

(−1)m−n0(m + 1
2)κ

m−nλm+n+1

0(n + 1
2)0(1 +m− n)

×F(m + 1
2,−n− 1

2; 1 +m− n; κ2) m > n (A.2)

ρ
(pn+p/2)
−pm−p/2 =

(−1)m0(m + 1
2)0(n + 3

2)κ
n+m+1λn−m

π0(2 +n +m)

×F(n + 1
2, m + 1

2; 2 +n +m; κ2). (A.3)

Using the formula [44]

F(a, b; a + b + 1; 1) = 0(a + b + 1)

0(a + 1)0(b + 1)
(A.4)

one can find the asymptotics of the coefficientsρ(n)m for κ → 1 [17]

ρ
(pn+j)
pm+j (τ � 1) ≈ sin[π(m + j/p)]

π(m + j/p)
(a + iγ )m+n+2j/pσ n−m. (A.5)

In particular, forp = 2 and for the odd (‘principal’) modes

ρ
(2n+1)
2m+1 (τ � 1) ≈ 2(−1)m

π(2m + 1)
(a + iγ )m+n+1 (A.6)

ρ
(2n+1)
−2m−1(τ � 1) ≈ 2(−1)m

π(2m + 1)
(a + iγ )n−m. (A.7)
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It is known [45] that the hypergeometric functionF(a, b; c; z) with ‘half-integral’
parametersa, b and an integral parameterc can be expressed in terms of the complete elliptic
integrals

K(κ) =
∫ π/2

0

dα√
1− κ2 sin2 α

= π

2
F

(
1

2
,

1

2
; 1; κ2

)
(A.8)

E(κ) =
∫ π/2

0
dα
√

1− κ2 sin2 α = π

2
F

(
−1

2
,

1

2
; 1; κ2

)
. (A.9)

In particular,

ρ
(1)
1 =

2λ(κ)

π
E(κ) ρ

(1)
−1 =

2

πκ
[E(κ)− κ̃2K(κ)] (A.10)

ρ
(1)
3 =

2λ2(κ)

3πκ
[(1− 2κ2)E(κ)− κ̃2K(κ)] (A.11)

ρ
(1)
−3 = −

2

3πκ2λ(κ)
[(2− κ2)E(κ)− 2κ̃2K(κ)] (A.12)

whereκ̃ ≡ √1− κ2 andλ(κ) =
√

1− γ 2κ2 + iγ κ.
The general structure of the coefficientsρ(1)µ (we confine ourselves to the casep = 2) is

as follows:

ρ
(1)
2m+1 =

2λm+1(κ)

πκm
[fm(κ

2)E(κ) + κ̃2gm(κ
2)K(κ)] (A.13)

ρ
(1)
−2m−1 =

2

πκm+1λm(κ)
[rm(κ

2)E(κ) + κ̃2sm(κ
2)K(κ)] (A.14)

wherefm(x), gm(x), rm(x), sm(x) are the polynomials of the degreem which can be found
from the recurrence relations (2.6).

The Taylor expansions of the complete elliptic integrals atκ → 0 (whenκ ≈ apτ ) read

E(κ) = π

2

(
1− 1

4
κ2 − 3

64
κ4 + · · ·

)
K(κ) = π

2

(
1 +

1

4
κ2 +

9

64
κ4 + · · ·

)
whereas their asymptotic behaviours atκ̃ → 0 are given by the formulae [44]

K(κ) ≈ ln
4

κ̃
+

1

4

(
ln

4

κ̃
− 1

)
κ̃2 + · · ·

E(κ) ≈ 1 +
1

2

(
ln

4

κ̃
− 1

2

)
κ̃2 + · · · .

In this casẽκ ≈ a/ sinh(apτ) and ln(1/κ̃) ≈ apτ .

Appendix B. Calculation of integrals

To calculate, for instance, the varianceU1 we use equations (3.7) and (A.10) and replace the
derivative overτ by the derivative with respect toκ using the relation (ifp = 2) dκ = 2βκ̃2 dτ ,
whereβ =

√
1− γ 2κ2. We arrive at the equation

dU1

dκ
= − 2

π2κ̃2κ2β
{[κ2(1− 2γ 2κ2) + 1− 2βκ]E2(κ)

−2κ̃2(1− βκ)E(κ)K(κ) + κ̃4K2(κ)}. (B.1)
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Let us consider first the caseγ = 0, whenβ = 1. Taking into account the differentiation
rules [44]

dK(κ)

dκ
= E(κ)

κκ̃2
− K(κ)

κ

dE(κ)

dκ
= E(κ)−K(κ)

κ
(B.2)

we may suppose that the factorκ̃2 in the denominator of the right-hand side of equation (B.1)
comes from the derivative dK/dκ. Thus it is natural to look for the solution in the form

U1 = 2

π2κ
[A(κ)K2(κ) +B(κ)K(κ)E(κ) +C(κ)E2(κ)] (B.3)

whereA(κ), B(κ) andC(κ) are some polynomials ofκ. Putting the expression (B.3) into
equation (B.1) we obtain a set of coupled equations for the unknown functionsA,B,C.
WritingA(κ) = a0 +A1(κ),B(κ) = b0 +B1(κ),C(κ) = c0 +C1(κ)we determine the constant
coefficientsa0, b0 andc0 by puttingκ = 0 in those equations. Then we obtain new equations
for the functionsA1(κ),B1(κ) andC1(κ) and repeat the procedure. After a few steps we arrive
at the equations which have obvious trivial solutionsAn = Bn = Cn = 0. This confirms our
hypothesis on the polynomial structure of the functionsA(κ), B(κ) andC(κ) and gives the
final answer. The equations for the variancesUµ, Vµ, etc withµ > 3 can be integrated in the
same manner; the only difference is that one should writeκµ instead ofκ in the denominator
of the expression like (B.3). In the generic caseγ 6= 0 we notice that the factorβ can appear in
the denominator of the expression (B.1) as a result of differentiating the functionβ(κ), since
dβ/dκ = −γ 2κ/β. Therefore we split each functionA,B,C into ‘β-even’ and ‘β-odd’ parts,
such asA = Ae(κ) + β(κ)Ao(κ). The equations for the ‘even’ and ‘odd’ coefficients turn
out to be independent, and we solve them using the procedure described above. The equation
(3.21) was integrated using the same scheme.

Appendix C. Asymptotics of the minimal variance and purity factor

For the initial diagonal density matrix (in the Fock basis), combining the equations (3.11)–
(3.13) and (4.5), we write the variances atτ � 1 as (we omit the subscriptµ)(

U(τ)

V (τ)

Y (τ)

)
=
( 2F sin2(χ/2) + f

2F cos2(χ/2) + g
−F sinχ + h

)
F = 8(aτ +Z)

π2µ
χ = µφ. (C.1)

The functionsf , g andh are much smaller thanF . At τ → ∞ these functions tend to
finite limits which do not depend on the initial state, since they can be found by integrating
equations (3.11)–(3.13). Thus we haveU + V = 2F + f + g, whereas

(U − V )2 + 4Y 2 = 4F 2 + 4F [(g − f ) cosχ − 2h sinχ ] + (f − g)2 + 4h2.

ForF � f, g, h we have√
(U − V )2 + 4Y 2 = 2F + (g − f ) cosχ − 2h sinχ +O(1/F )

so the minimal varianceu(τ) (3.15) tends to the finite limit

u(∞) = f cos2(χ/2) + g sin2(χ/2) + h sinχ

which does not depend onZ, i.e. on the initial state.
Analogously,UV − Y 2 = 2Fu(∞) + O(1) ∼ τ for τ � 1. Consequently, the purity

factorχ asymptotically goes to zero asτ−1/2.
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Appendix D. Photon distribution in the Gaussian state

In the most compact form the information on the photon distributionf (n) in some mode (we
suppress here the mode index) is contained in thegenerating function

G(z) =
∞∑
n=0

f (n)zn.

For the most general Gaussian state it was given in [38,39] (for a single mode):

G(z) = [G(z)]−1/2 exp

(
1

D

[
zg1− z2g2

G(z)
− g0

])
(D.1)

where

G(z) = 1
4[(1 + z)2 + 4(UV − Y 2)(1− z)2 + 2(U + V )(1− z2)]

D = 1 + 2(U + V ) + 4(UV − Y 2) = 4G(0)
g0 = 〈p̂〉2(2U + 1) + 〈q̂〉2(2V + 1)− 4〈p̂〉〈q̂〉Y
g1 = 2〈p̂〉2(U2 + Y 2 +U + 1

4) + 2〈q̂〉2(V 2 + Y 2 + V + 1
4)− 4〈p̂〉〈q̂〉Y (U + V + 1)

g2 = 2〈p̂〉2(U2 + Y 2 − 1
4) + 2〈q̂〉2(V 2 + Y 2 − 1

4)− 4〈p̂〉〈q̂〉Y (U + V ).

(D.2)

If 〈p̂〉 = 〈q̂〉 = 0, then the probabilityf (n) is expressed in terms of the Legendre polynomials:
see equation (5.1). In the generic casef (n) is related to the 2D ‘diagonal’ Hermite polynomials
[38]:

f (n) = F0

n!
H {R}nn (x, x

∗) (D.3)

where

F0 = f (0) = 2D−1/2 exp(−g0/D)

x =
√

2{(2V − 1)〈q̂〉 − 2Y 〈p̂〉 + i[(1− 2U)〈p̂〉 + 2Y 〈q̂〉]}
2(U + V )− 4(UV − Y 2)− 1

and 2× 2 symmetric matrixR has the elements

R11 = R∗22 =
2

D
(V − U − 2iY ) R12 = R21 = 1

D
[1− 4(UV − Y 2)].

The 2D Hermite polynomials are defined via the expansion [46]

exp

(
−1

2
aRa + aRx

)
=

∞∑
m,n=0

am1 a
n
2

m!n!
H {R}mn (x1, x2) (D.4)

wherex = (x1, x2), a = (a1, a2). The properties of these polynomials were studied recently
in [39,43]. In particular, they can be expressed as finite sums of the products of the usual (1D)
Hermite polynomials. The corresponding formula for the probabilities reads [38]

f (n) = F0

(
1

D

)n n∑
k=0

(
S

1

)k
n!

[(n− k)!] 2k!
|Hn−k(ξ)|2 (D.5)

where

1 =
√
(U − V )2 + 4Y 2 S = 4(UV − Y 2)− 1

ξ = (2V + 1)〈q̂〉 − 2Y 〈p̂〉 + i[(1 + 2U)〈p̂〉 − 2Y 〈q̂〉]
[2D(V − U − 2iY )]1/2

.

The photon distribution function (5.1) can be simplified in the long-time limitτ � 1, when
the average number of created photonsN ≡ n̄ ≈ (V +U)/2 exceeds 1. Then the mean-square
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fluctuation of the photon number has the same order of magnitude as the mean photon number
itself,

√
σn ≈

√
2N , and the most significant part of the spectrum corresponds to the values

n� 1. Using the Laplace–Heine asymptotical formula for the Legendre polynomial [47]

Pn(z) ≈
(
z +
√
z2 − 1

)n+1/2

√
2πn(z2 − 1)1/4

n� 1

one can simplify (5.1) for the fixed values of the invariant variancesu andv as

f (n) ≈ 1√
πn(v − u)

(
2v − 1

2v + 1

)n+1/2

(D.6)

provided the positive differencev − u is not too small. Another approximate formula can be
used ifv � 1 butu ∼ 1:

f (n) ≈
√

2(2u− 1)n/2√
v(2u + 1)(n+1)/2

e−n/(2v)Pn

(
2u√

4u2 − 1

)
n� 8v2. (D.7)
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