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Abstract. We obtain explicit analytical expressions for the quadrature variances and the photon
distribution functions of the electromagnetic field modes excited from vacuum or thermal states due
to the non-stationary Casimir effect in an ideal one-dimensional Fabry—Perot cavity with vibrating
walls, provided the frequency of vibrations is close to a multiple frequency of the fundamental
unperturbed electromagnetic mode.

1. Introduction

During the last decade, the attention of many authors was attracted to quantum phenomena in
cavities and media with moving boundaries, known under the namestationary Casimir
effect(NSCE) [1],dynamical Casimir effed®], or mirror (motion) induced radiation3, 4].

For the most recent achievements in this field and references to other works see, e.g., [5-23]
(the problems of thelassicalelectrodynamics with moving boundaries are studied in [24,25]).

A complete analytical solution to the problem of a one-dimensional (1D) (Fabry—Perot) ideal
cavity withresonantly vibratindboundaries was found recently in [17]. This solution holds for

any moment of time (provided the amplitude of the wall vibrations is small enough); moreover,

it enables us not only to calculate the number of photons created from an arbitrary initial state,
but also to account for the effects of detuning from a strict resonance.

In the present paper, continuing the line of research of [17], we calculate the effects
of squeezingnd find thephoton distribution functiorof the field in each mode inside the
cavity. Although a possibility of squeezing the electromagnetic field in a cavity with moving
boundaries due to the NSCE was discussed for the first time nine years ago [26], the concrete
calculations of the variances of the field quadrature components were made only in the short-
time [26, 27] and long-time [28, 29] limits under the conditiorstrict resonance. As for the
photon statistics in an oscillating Fabry—Perot cavity, that has not been discussed at all until
now (the photon distribution in a 3D nondegenerate resonantly driven cavity was found in [5]).

2. Field operator in a 1D cavity with oscillating boundaries

We start with a brief description of the main results of [17] which are used in the subsequent
sections. Following the model of a ‘scalar electrodynamics’ [30], we assume that a 1D cavity
is formed by two infinite ideal plates whose positions are givem;jy = 0 and

Xright = L(t) = Lo(1 + e sin[pw1(1 +8)t]) el k1l |5kl (2.1)
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wherew; = mc/Logandp = 1,2,.... As was shown in [17], the results can be easily
generalized to a generic case when both the mirrors oscillate (see also [11, 22]). We are
looking for the only component of the operator vector potential of the electromagnetic field
A(x, 1) in the Heisenberg representatiamthe form (hereafter = /1 = 1)
o0
Ax.n=Y" i[;;”w) (x,1) +h.c] [, b]] = Sut. (2.2)
n=1 ﬁ
This operator must satisfy the wave equat,j&)n— A, = 0andthe boundary conditions [30]
A(0,1) = A(L(t), 1) = 0. Forr < 0, whenthe wallis assumed to be atrest, functiéf(x, r)
has a simple factorized form"” (x, r) = € 7" sin(znx/Lo), @, = nw;. The normalization
factors 2/n in (2.2) are chosen in such a way that the energy of the field in the stationary case
can be represented as a sum of energies of independent mode oscillators (see the next section).
Fort > 0, following [31] we expand each functioh™ (x, ¢) in a series with respect to
theinstantaneous basis

@ _ Lo v o [ﬂ]
v (x, 1) = L([);Qk (t)sin ol (2.3)

In this way we automatically satisfy the boundary conditions. Then the wave equation is
replaced by the infinite set of coupled differential equations

0" +f( 0" =2 gij 00"+ & ()0 +0 () (2.4)
j=1 j=1

where
2kj L(t)
(j2—Kk2)L(1)
As was shown in [17], the set of equations (2.4) can be significantly simplified in the case of
the (quasi)resonance oscillations of the wall given by the dependence (2.1) if one writes

wi(t) =k /L(t) g = —gjx = (=D

0" (1) = perion @) _ 5 g1 (2.5)
assuming the coefficienté") (k=+1,+£2,...;n=1,2,...)to be slowly varying functions

of time, whose derivatives are proportional to the small parametePutting (2.5) into
equation (2.4) and neglecting the second—ordertermsjfﬂev"sz, one obtains, afteraveraging
over fast oscillations with the multiple frequenciesaf the equations [17]

d n n n H n
A = oLk o, — = o, 1+ 2ivko” (2.6)

wherey = §/¢, 0 = (=17, andt = %8a)1t is the ‘slow time’. The exact solutions to
equation (2.4) differ from the approximate form (2.5) by the terms proportional to the higher
harmonics expEiraxt], r = 2,3, .... However, the magnitudes of the corrections are of the
order ofe (or less), so they can be neglected, at least under the condition, ~ (w1£?) L.

For the valuesn; ~ 10'° s ande ~ 1078 corresponding to the possible experimental
realizations [5] the limiting time; is of the order of weeks.

Due to the initial conditionso,ﬁ”) (0) = &, the solutions to (2.6) satisfy the relation

Pl = 01if j # k. The nonzero coefficienis(” read [17]
: T(L+n+j/p)(owk)"—mam*n*2i/p , ,
(j+np) 2

~ = Fn+j/p,—m—j/p;1+n—m;
Pjsmp () T em+ /A rn—m) (n+j/p,—m—j/p;L+n—m;«)

2.7)
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whereF (a, b; c; z) is the Gauss hypergeometric function,

o — __ SinhapT) a=vy1—y2  a=1—p2%2+iyk. (2.8)

The functions (2.7) arexactsolutions to the set of equations (2.6) relating the coefficients
with different lower indices. Besides, these functions satisfy another set of equations, which
can be treated as recurrence relations with respect topherindices [17]:

d

g =nlolol ™ = o+ 2iye’)  nzp AP =0 (29)
d

= —pm = n{a[,o(’7 Ko o] + 2iyp} n=12...,p—1 (2.10)

The consequences of equations (2.6), (2.9) and (2.10) are the identities

Z mp™*p® = s, nk=12... (2.11)
;_
Z —[p ol — p™rp"] = 8, m,j=12,... (2.12)
n:l

o0
> Lo pt M e p =0 mj=12.... (2.13)

n= 1

The formulae given above hold for any value of the detuning parametéory > 1 one
should replace the functions sifatx) /a and coslax) by their trigonometrical counterparts
sin(ax)/a and cosax), wherea = /y2 — 1.

3. Squeezing the initial vacuum

We suppose that after some interval of titfieghe wall comes back to its initial positiabg.
Fort > T, the field operator assumes the form

Ax, 1) = Z Sln(rmx/Lo)[an i (HT) 4y e ] (3.1)

where operators,, are related to the initial operatobs andlS,‘: by means of the Bogoliubov
transformationt; = 2ew;T)

i = Z\/ —[bapl (zr) = bl ()] m=12,.... (3.2)

The commutation relationg|, &k] = &, hold due to the identities (2.11)—(2.13) which are
nothing but theunitarity conditionsof the transformation (3.2). These commutation relations
together with the expression for the energy of the field

.1 [l dA 9A e 1
H d - = L ata, + = 3.3
87 * (a;) <8x> ;‘“ (“"“ 2) (3:3)

convince us that namely, andfz;r are true photon annihilation and creation operatorsaf’
(just as the operatois, andb were ‘physical’ ones at < 0).
Now we introduce the Hermitian quadrature component operators

Qm - (&m +&L)/«/§ ﬁm - (&m - &L)/(Iﬁ)
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and calculate their variancés, = (32) — (Gm)?, Vi = (p2) — (pn)? and the covariance
Y, = %(ﬁmém +Gm Pm) — (Pm){qm) in the vacuum stateith respect to the initial operatofs,:

b,|0) = 0 (remember that we use the Heisenberg picture). Using (3.2) we obtain (assuming
hereaftew; = 1)

m & " mal "
U =23 2o -0 =2 Remeane e
n=1 n=1"
[e¢]
Y = Z —Im [p™*p™] (3.5)
n=1

where the coeff|0|ent$>(") should be taken at the moment thus their argument isy.

Strictly speaking, the expressions (3.4), (3.5) have physical meanings at those moments of
time T when the wall returns to its initial position, i.e. fdr= Nx/[ p(1 +§)] with an integer

N. Consequently, the argument of the coefﬁmentso(”) in (3.4), (3.5) assumes discrete
valuest™¥) = Nermr/[2p(1 +6)]. One should remember, however, that something interesting

in our problem happens for the values- 1 (or larger). ThemV ~ ¢~1 > 1, and the minimal
incrementAt ~ ¢ is so small that; can be considered as a continuous variable (under the
realistic conditionsg < 108 [5]). For this reason, we omit hereafter the subscFipivriting
simply t instead ofr; or t™™.

Differentiating the right-hand sides of equations (3.4) and (3.5) with respect to the ‘slow
time’ t, one can remove the fractioryd with the aid of the recurrence relations (2.9) and
(2.10). After that, changing if necessary the summation indexn + p, one can verify that
almost all terms in the right-hand sides are cancelled, and the infinite series are reduced to the
finite sums:

dUm/dT _ (p—n) (p—n) s ®
dvm/dr} o ZRe([p F 025 et F oD

dv,,/dt = om Z Im (p{*pP=m% 4 p) p= )y
Now one should take into account the structure of the coefficigfit§2.7): they are different
from zero provided the difference between the upper indexd the lower one: is some
multiple of the numbep. If m = j+ pkwith j =1,...,p—21andk =0,1,2,..., then
only the terms witth = j orn = p — j survive in the sums above. Depending on whether
Jj = p/2orj # p/2, we obtain two different sets of explicit expressions for the derivatives
of the (co)variances.
(1) If m = j + pk butj # p/2 (in particular, for allodd values ofp), then

dau,,  dv, dy,,

dr ~ dr dr 0 (3.6)
In this case’,, = 0 andU,, = V,, = N, + 1 5, Where\,, is the mean number of photons created
from vacuum in thenth mode calculated in [17], so there is no squeezing. yFat 1 the
quadrature variances monotonously increase in time, with an asymptotical linear dependence.
If y > 1, the variances oscillate in time with amplitudes inversly proportionafte1, always
being no less thas.

(2) Some squeezing can be achieved only in the ‘principal’ modes with the numbers
M:p(k+%),k=0,l,2,...:
40 — = uRe([p?/? + p*?1?) 3.7)
dr dr

dv,/dr = ulm ([p/2*1? + [p4/?1?) (3.8)

— i

= 20mRe(p p 07

—uRe([p"? — p%/?1?) av.
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(in particular, itis necessary thatbe anevennumber). In the strict resonance cage=£ 0) all
the coeﬁicients),(f/z) are real, s¢,, = 0 and dJ,,/dr < 0 in the whole interval < t < oo,
resulting in the inequality/, () < 3.

Note that the coefficienis,,”/’ depend on the parameteonly through the dependence
of the the variabler on the productpz: see equation (2.8) and the explicit form of these
coefficients in appendix A. Thus it is sufficient to consider the most important special case
of the parametric resonance at theublefundamental frequency«3 (i.e. p = 2), since the
formulae forp > 2 can be obtained by a simple rescaling of the ‘slow time’ (for the ‘principal’
modes). In this case, only the odd modes can be excited from the vacuum, and they do exhibit
some squeezing.

Using equations (3.7) and (3.8) one can immediately find the Taylor expansions of the
(co)variances at — 0 (assuming—1)!! = 1):

1 2m — 11t 72 2m +1
l‘ZZ: } =5>F 72l |:—( — ) :| |:1:|: o~ 1)27: + (’)(1’2):| (3.9)

2
(2m — D! } .

m!

Yomsr = —2y (2m + 172D [ (3.10)

We see that th&/-variances are always less th§rat the initial stage, but the degree of their
squeezing rapidly decreases with increase of the numbéfote that the dependence on the
detuning parameter in the short-time limit appears only in terms of the order #f*3 (and
higher).

In the opposite limit — oo (or« — 1), using equations (3.7), (3.8) and the asymptotics
of the Bogoliubov coefficients (A.4) we obtagonstantime derivatives

16a . 1
dUzm+1/dt |00 = m sin? |:<m + E) qb:| (3.11)
16a 1
dVans1/dTlr 00 = m cos |:<m + E) ¢i| (3.12)
8a .
AdY2+1/0dT]r 500 = T Zom+ D) sin[(2m + 1) ¢] (3.13)

where¢ = arcsiny. Consequently, all the (co)variances increase with time linearly, giving

the constant photon generation rate in the ‘principal’ (odd) modes
8a

72(2m +1)

in agreement with [17]. Equation (3.14) results in a simple estimation of the mean photon

number in theuth mode atr > 1: NV, (7) ~ at/u.

Since the covariancg, is different from zero ify # 0, the initial vacuum state of the
field is transformed to theorrelatedquantum state [32,33]. One should remember, however,
that the values ot/,,, V,, andY, yield the (co)variances of the field quadratures only at the
moment: = T (when the wall stopped to oscillate). At the subsequent moments of time
the quadrature variances exhibit fast oscillations with twice the frequency of the mode. For
example (omitting the mode index),

0,(t'") = U cof(wt') + V sir(wt') + Y sin2wt’) ' =t—T.
Therefore, the physical meanings have not the valygsV,, andY, themselves, but rather
theminimal o,,;, = u,, andmaximalo,,., = v, values of the quadrature variances during the
period of fast oscillations [34]

}: S (Ut Vi ¥ W = V2 +412). (3.15)

dN2m+l/dT|r%oo = (314)

Uy

Up
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But in the special case of the strict resonanee<0) we haver,, = U, andv, = V,,.

The equations (3.7) and (3.8) can be integrated for any valugsasfd y in terms of
the complete elliptic integral& («) and E(«x): see appendix B for the technical details. In
particular, for the fundamental mode we find

2

Uy = E[#(ﬁ — 1K) K2(k) — 2(B — k) K (k) E(k) + BE* (k)]
2

Vi=—[2(8 + K ) E() — (B + k) K?(k) — BE*(ic)]

_ %

1= SIRK 0 — 2K () Blx) + B (0)]

whereg = Rex = /1 — y22 andk = +/1 — «2. Then equation (3.15) yields the minimal
and maximal invariant variances

up = %[;?2(1 — ) K?%(k) —2(1 — k) K (k) E(k) + E%(x)] (3.16)
vy = %[2(1 +i)K ) E (k) — 21 +k)K2(k) — E?(x)] (3.17)

which depend on the detuning parametemly implicitly, through the dependence grof the
functionk (z) (2.8). In the short-time limit <« 1 (thenk ~ 27) we obtain, using the Taylor
expansions of the complete elliptic integralg,= % —7+7%+...andvy = % +T+7%4.
in accordance with [26]. More precisely,

Ui
U1

1 1.2, 13,7, 4, ..
}—Z(l:FK+2K F e g )

The minimal variance; monotonously decreases from the Va%Jatt = 0 to the constant
asymptotical value 2r2 att > 1, confirming qualitatively the evaluations of [28, 29] and
giving almost 50% squeezing in the initial vacuum state. The variance of the conjugate
quadrature monotonously increases, andfog 1 it becomes a practically linear function of
time: vi(r > 1) ~ 16¢/72. The asymptotical minimal valug,(r = o) does not depend
ony providedy < 1 (only the rate of reaching this asymptotical value decreasesyéth
V1—y2). Inthe strongly detuned case,> 1, the minimal variance oscillates as a function
of 7 (being always greater tharf22), since in this case the functiar(r) oscillates between
—y~landy1.

The minimal variance does not go to zero when> oo due to thestrong intermode
interaction which results in a high degree ghantum mixingor each mode. Since the state
originating from the initial vacuum state belongs to the classaissiarstates (see section 5),
the quantum ‘purity’y,, = Tr 52 of the mth field mode (described by means of the density
matrix 5,,) can be expressed in terms of the (co)variances as{35% [4(U,, V,, — Y2)] V2.
Using equations (3.11)—(3.13) one can check that =1/ — 0forz > 1 (see appendix C).
For instance, fom = 1 we have (writing simpl< and E instead ofK (x) and E(«k))

2
X1 = %K[4KE3 + 4 K3E — 602 K2E? — B* — RSK4 Y2, (3.18)

The initial dependence onis rather weaky (xk < 1) =1 — 3§2K4+ .. Butwhenk — 1, x
rapidly goes to zeroy (¢ <« 1) ~ (8/7?)[In(4/&)]~Y/?, with dx /d« — —oo.

It is worth mentioning that in the resonance case there is no effective interaction between
different modes of anondegeneratg¢3D) cavity possessing a nonequidistant eigenmode
spectrum. In such a cavity the minimal variance asymptotically goes to zereforo [5,15].
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For the sake of completeness we introduce the formulae (found in [17]) for the mean
photon number in the fundamental mode and the total energy of photons created in all the
modes (for the initial vacuum state):

2 1

Ni(k) = PK(K) [2E(k) — R*°K (k)] — > (3.19)
2_1

Epor(7) = ”17 sint(par). (3.20)

In [17] the formula for the second derivative of the total mean number of photons created from
vacuum in all the modes was also derived:
dzMDI _ 8
dr2 722
Now we are able to integrate this equation. Taking into account the conditionM/gdd = 0
att = 0 we obtain the very simple expression

[/*K? — 20°KE + (1 +12 — 2y%* E?). (3.21)

Ny = %mm[mfc) — B, (3.22)

The expressions for the variances in the modes with numbets3 are rather involved,;
their general structure is discussed in appendix B. Here we give only one explicit example—the
variancelU; for y = 0:

Us [2(1— k) (4 +10c + %) K2 (k)

= %3
+(1— k) (4x® — 14° — 20k — 8) K (k) E (k)
+(4ic* + 613 — k2 + B + 4 E? ()]. (3.23)
The Taylor expansion of the right-hand side of (3.23) coincides with the expansion (3.9). The
asymptotical value at — oo equalsUs(k = 1) = 38/(97?) ~ 0.43. We see that the
squeezing rapidly disappears with increase of the mode number
The variancé/; can be obtained from (3.23) by means of a simple substitutien —«.
Therefore the mean number of photons in the third mode is given by

Ns = o362 — 2K(@E - £2K) + 21 +x?) E?] - . (3.24)
3k 2

It is remarkable that despite all three (co)variantgs V,, andY,, linearly increasing with
time atr > 1in the generic case # 0, theminimal variance:, tends to aonstantvalue at
T — o0: see appendix C.

The results of this section confirm completely the earlier conclusions [26] concerning the
behaviour of the quadrature variances in the short-time limipfer 2, as well as the results of
approximate numerical calculations performed in [27] (in the same limip) fer2 andp = 3.

In the long-time limit we see gualitativeagreement with earlier approximate asymptotical
formulae of [28, 29] related to the behaviour of the squeezed quadrature component variance
(for y = 0): namely, that the squeezing effect is strongest for the lowest mode and that
it decreases with an increase of the mode number. However, there are differences in the
numerical values of the squeezed variances. This can be explained as follows. In [28, 29]
only theleading term®f the Bogoliubov coefficients (analogues of the coefficigijty were

found. But the coefficients™ () andp"), (x) become the same in the limit= 1 (if » = 1)

and they do not depend on the upper indexsee appendix A. For this reason, although the
leading terms of the asymptotic expansions enable us to calculate correctly the number of
photons and thensqueezedariances liké/,,+1, these terms areancelledin the expressions

for thesqueezedariances likeU,,+1 (if y = 0). It was found in [28, 29] that the difference



6718 V'V Dodonov ad M A Andreata

A, = 2 — Upp+1(t — 00) decreases ag@m + 1) for m > 1. The numerical integration
of equation (3.7) yields for the produ@m + 1)A,, the values close to.Rfor1 < m < 5
(according to (3.23),8; = 0.2166. . .). It seems probable that the limit value of this product
atm — oo equals 272 = 0.2026.. ., but we did not succeed in proving this conjecture
analytically.

4. Influence of initial conditions

For an arbitrary initial state of the field one can wiltg = U9 + AU,,, whereU** is
given by equation (3.4); similar expressions can be writterifprandY,,. The corrections
due to the nonvacuum initial states are given by

AV, } = REZ Tl pET 1o F pUnbTb;) — (b (b))]

i[p“)w(",; [0 F p O bub;) — (ba) (b )]) (4.1)
AY, =Im Y f<[p<">*p‘f31 I N bib;) — (bl (b))

n,j

+[p™ o — ) p N[ bub;) — (By) (b)) (4.2)

where the average values lik&/h;) are calculated in the initial state. All the corrections
disappear in the case of the initial coherent stfmkm) = a,|a). If the initial density matrix is
diagonalin the Fock basis (as happens, e.g., for the Fock or thermal state@jﬁe;h: Vnbj

(v, = 0), all other average values in (4.1) and (4.2) being equal to zero. In this case the double
sums are reduced to the single ones:

AU, —mz lon” = Pl AVm—mZ o)+ ol P (43)

AYm =2m Z _Im [ (n)*pyln)l (44)

We see that the initial fluctuations always increase both the varidiigesnd V,, (for the
diagonal density matrix). However, asymptoticallyrat> oo the corrections are bounded
for the physicalinitial states having finite total numbers of photons, because the coefficients
o™ + p™ 12 and Im p™* "] do not depend on the summation indein this limit: see

—m

equations (A.6) and (A.7). Thus we have in the ‘principalimodes (forp = 2; ¢ = arcsiny)

AU 2sirt(ug/2) -
V2k+1
AV = —— x 1 2c0$(ue/2) Z= : (4.5)
’foo) T2 . = 2k+1
AY, —sin(ue) =

These expressions are very similar to (3.11)—(3.13). Their consequence is the important result
that in the limitz — oo the minimal variance:,, does not dependn the initial state of the

field inside the cavity, provided the initial density matrix was diagonal in the Fock basis. The
proof is given in appendix C. The correction to the mean number of photons tends to the limit
AN =8Z /(% ).

5. Photon distribution

Now let us turn to thephoton distribution functiofPDF) f (n) = (n|p, (t)|n), where|n) is
the multimode Fock statey = (n1, n2, .. .), andp, (¢) is the time-dependent density matrix
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of themth field mode in theschibdingerpicture. At first glance, there is a problem, since all

the calculations in the preceding sections were performed in the frameworktééibenberg

picture. Fortunately, this problem can be easily resolved for a special claSaussian

initial states (i.e. the states whose density matrices, or wavefunctions, or Wigner functions,
are described by some Gaussian exponentials). This class includes coherent, squeezed and
thermal states; in particular, it includes the vacuum state which we are interested in here.

The solution is based on two key points. The first one is the statement [9, 31] that the field
evolution in a cavity with moving boundaries can be described not only in the Heisenberg
picture, but, equivalently, in the framework of the Satlinger picture, with eguadratic
multidimensional time-dependent Hamiltonian. The second key point is the fact [36, 37] that
the evolution governed by quadratic Hamiltonians transforms any Gaussian state to another
Gaussian state.

It remains to take into account that the photon distribution function of any Gaussian state
is determined completely by the average values of quadratures and by their variances [38, 39],
which obviously do not depend on the quantum mechanical representation. The explicit
formulae in the generic case are rather involved, so we give them in appendix D. Here we
confine ourselves to the most simple case ofwtheuuminitial state, when all the average
values of quadratures are equal to zero. In this case the generating function (D.1) is reduced
to [G(z)] Y2, i.e. it has the same structure as the known generating function of the Legendre
polynomials P, (x). After some algebra we obtain the following expression for the photon
distribution in themth field mode:

2[(2um - 1)(21),” - 1)]n/2 4um Um — 1 (5 1)
[ + 1) @2y + DI D2\ J(@uZ — D@2 - 1)) '

It depends only on the invariant minimal and maximal varianggs®nduv,,. Note that the
argument of the polynomial in (5.1) is alwagsitsidethe ‘traditional’ interval(—1, 1) (in
particular, this argument is pure imaginary if,2 < 1), being exactly equal to one for the
‘nonprincipal’ modes witht,, = v,, = N, + % when formula (5.1) transforms to the time-
dependent Planck’s distribution

Na (@)
[N () + 1+
Only for the ‘principal’ u-modes is the spectrum of photons different from Planck’s one due
to the squeezing effect. The first and second derivatives of the generating function (D.1) at

z = 1 yield the first two moments of the photon distribution (hereafter we suppress subscript
m)

Sm(n) =

.ﬁn (n; 7:) -

i=3iu+v-1 o, =n2 — ()2 = F(2u? + 20? — 1) (5.2)
which result in the Mandel parameter
W+ —u—v+ %
O=o,/i—1= ) (5.3)
u+v-—1

This parameter appears positive for all values,&fo the photon statistics is super-Poissonian,
with strong bunching of photons (the pair creation of photons in the NSCE was discussed
in[3,4,7,13]). In particular,

Qons1(t = 0) =~ [(m + 1) (2m — DI /m!]>c?" /(2m + 1) 0:000=1

whereasD,, ~ V,(t) > 1fort > 1 (if y < 1).
The analytical expressions obtainedin the paper areillustrated in two figures. Infigure 1we
show the dependences on the universal varialf8) of the minimal and maximal variances
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2,0 1

1,51

1,0 1
0,5 1

0,0 : : ' ' '
0,0 0,2 0,4 0,6 0,8 1,0

Figure 1. The minimal varianca1, the maximal variance, the purity factory, the mean photon
numberN3; and Mandel's parametep of the fundamental modg = 1 versus the universal
parametek (2.8).
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0.051 e 7 L

0.00 s

Figure 2. The photon distribution function in the fundamental field mede- 1 for r = 5 and
y = 0, p = 2 (points connected with solid lines). Points connected with dashed lines correspond
to the Planck distribution with the same mean photon number.

u; (3.16) andv; (3.17) together with the purity factos; (3.18), the mean photon numbgg

(3.19) and theQ-factor (5.3) for the fundamental mogde= 1. An example of the photon
distribution in the principal modg = 1 for y = 0 is given in figure 2, where the ‘cavity’
distribution is compared with Planck’s one corresponding to the same mean photon number.
We see no oscillations typical for the pure squeezed states [40—42] (excluding a small ‘splash’
atn = 2), because the field appears inmixed quantum state (the influence of quantum
mixing on the oscillations of the PDF in generic Gaussian states was studied in [38, 39, 43]).
The asymptotics of the photon distribution function (5.1) in the long-time limit are given in
appendix D.
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6. Conclusion

The main results of the paper are as follows. We studied the behaviour of the electromagnetic
field quadrature variances in a 1D cavity with resonantly oscillating ideal boundaries in the
whole time interval 0< ¢ < oo for all field modes and for any (small) value of the detuning
parameter. We have shown that each field mode goes to a mixed quantum state due to the
intermode interaction (caused by Doppler’s effect on the moving mirrors). We found that
squeezing can be observed only in the ‘principal’ modes with nunyb@érs %), where integer

p is close to the ratio of the wall vibration frequency to the frequency of the fundamental
cavity mode. Analysing the influence of the initial nonvacuum state of the field we discovered
that the initial thermal fluctuations do not affect the minimal value of the quadrature variance
(whichisless that%) in the long-time limit. This resultis important from the practical point of
view, since it shows that certain significant features of the nonstationary Casimir effect are not
sensitive to the temperature (see also [23] in the case of the 3D cavity). We found the photon
distribution functionsf,, (n) for all modes. For the modes which do not exhibit squeezing,
the PDF coincides with a time-dependent Planck’s distribution, while the PDF in the distinct
‘principal’ modes differs from Planck’s one, being ‘flatter’ fers 1.
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Appendix A. Some properties of the Bogoliubov coefficientp(™)

The non-zero coefficienis;” for the ‘principal’ modes read
3 - +n+l
(pn+p/2) I'n+ z)Kn my mrn

PP T D+ 3D +n —m)

><F(n+l,—m—%;1+n—m;/<2) n>m (A1)
e (_1)m—nr(m + %)Km—llxm+n+1
pmp/z T(n+3HrA+m—n)
xF(m+1,—n—%;l+m—n;/<2) m>=n (A.2)
upry _ (FD"Tn+ DL+ Dy
—pm=p/2 al(2+n+m)
xF(n+;,m+%;2+n+m;K2). (A.3)
Using the formula [44]
Fa+b+1)
Fa,ba+b+1L1)= ——M— A4
@ bia )= Fa+Dro+ D (A4)
one can find the asymptotics of the coefficien}s for k — 1[17]
(pn+j) 1) ~ sinfz(m + j/p)] + oy )mnt2i/p g n—m N
ppm+] (T >> ) 7T(m+]/p) (a V) o . ( . )
In particular, forp = 2 and for the odd (‘principal’) modes
2(-1™ .
(2n+1) ~ mtn+l
Pouet (T > D~ o on+ D) (a+iy) (A.6)
" 2(=n™ oo
p(_zz,,i)l(r >~ 2" (a+iy)"™. (A.7)

m(2m+1)
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It is known [45] that the hypergeometric functiofi(a, b; c; z) with ‘half-integral’
parameterg, b and an integral parametercan be expressed in terms of the complete elliptic

integrals
/2 dor T (11 )
K(K)—/O m_EF (575517'( ) (A.8)
/2
B = [ wvicesite=3r (-1 510). (#9)
0
In particular,
p® = 2O gy o = B — 2K ] (A.10)
b TTK
2
oS = M[(l — 2% E(x) — R°K (1)] (A.11)
3k
2
o _ _ — 2 _ %2
P = S [(2—k®)E(k) — 28°K (1)] (A.12)

wherek = v1—«2andi(k) = /1 — y22+iyk.
The general structure of the coefficiem{é) (we confine ourselves to the cage= 2) is
as follows:

2)»””1
Pops1 = Tnfl{)[fm (D E () + 828 (KD K ()] (A.13)

2
1 -
P = m[rm(Kz)E(K) + %5 (1K) K ()] (A.14)
where f,,(x), gn(x), rn(x), s, (x) are the polynomials of the degreewhich can be found
from the recurrence relations (2.6).

The Taylor expansions of the complete elliptic integralg a¢ 0 (whenk =~ apt) read

b4 1, 3, b4 1, 9,
= |1—ZKk?— —k*+... = (1+=k%+ —x*+...
E(x) 5 (1 K K ) K (k) > <1 4K 64K

whereas their asymptotic behavioursat> 0 are given by the formulae [44]

4 1 4 5
Ki)~In=+=[In=—=1)k“+---
kK 4

K

1 4 1\ ,
~1+= - -z
Ek)~1 2<|nlz 2)/(

=+

In this caser ~ a/ sinhapt) and IN1/k) ~ apr.

Appendix B. Calculation of integrals

To calculate, for instance, the variante we use equations (3.7) and (A.10) and replace the
derivative over by the derivative with respect tousing the relation (ip = 2) dvc = 28«2 dr,
whereg = /1 — y2¢2. We arrive at the equation

dUl 2 2 2.2 2

E = —m{[l( (1 — 2)/ K ) +1— 2,8K]E (K)

—20%(1— B)E() K (k) + K2 (k). (B.1)
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Let us consider first the cage = 0, wheng = 1. Taking into account the differentiation
rules [44]

dK(x)  Ek) K(k) dE(k) _ E(k) — K(k)

a (B.2)

dx KK K dx K

we may suppose that the faciorin the denominator of the right-hand side of equation (B.1)
comes from the derivativel /d«. Thus it is natural to look for the solution in the form

Ur = % [AG)K2(k) + B()K () E(x) + C(k) E(k)] (B:3)

where A(x), B(k) andC(«x) are some polynomials af. Putting the expression (B.3) into
equation (B.1) we obtain a set of coupled equations for the unknown functioss C.
Writing A(k) = ag+A1(k), B(k) = bo+ B1(k), C(k) = co+C1(x) we determine the constant
coefficientsag, bp andcg by puttingx = 0 in those equations. Then we obtain new equations
for the functionsA;(x), B1(x) andCy(x) and repeat the procedure. After a few steps we arrive
at the equations which have obvious trivial solutiohs= B, = C, = 0. This confirms our
hypothesis on the polynomial structure of the functiang), B(x) andC(x) and gives the
final answer. The equations for the varian€gs V,,, etc withy > 3 can be integrated in the
same manner; the only difference is that one should wtiterstead ofc in the denominator

of the expression like (B.3). In the generic cgsg 0 we notice that the factgr can appear in
the denominator of the expression (B.1) as a result of differentiating the furgtion since
dB/d« = —y?«k/pB. Therefore we split each function, B, C into ‘ B-even’ and g-odd’ parts,
such asA = A.(x) + B(k)A, (k). The equations for the ‘even’ and ‘odd’ coefficients turn
out to be independent, and we solve them using the procedure described above. The equation
(3.21) was integrated using the same scheme.

Appendix C. Asymptotics of the minimal variance and purity factor

For the initial diagonal density matrix (in the Fock basis), combining the equations (3.11)-
(3.13) and (4.5), we write the variancesrat> 1 as (we omit the subscript)

U(z) 2F sinf(x/2) + f
<V(r)) = <2Fco§(x/2)+g) F= %;T;Z)

Y(1) —Fsiny +h

The functionsf, g andh are much smaller thai. At t — oo these functions tend to
finite limits which do not depend on the initial state, since they can be found by integrating
equations (3.11)—(3.13). Thus we hdver V = 2F + f + g, whereas

x=up. (C1)

(U — V)2 +4Y? = 4F%2 + 4F[(g — f)cosy — 2hsiny]+ (f — )% + 4h.
For F > f, g, h we have

V(U = V)2+4Y2 = 2F + (g — f)cosy — 2hsiny + O(1/F)
so the minimal variance(t) (3.15) tends to the finite limit

u(o0) = fcog(x/2) + g sirt(x/2) + hsiny

which does not depend d,, i.e. on the initial state.
Analogously,UV — Y? = 2Fu(o0) + O(1) ~ t for r > 1. Consequently, the purity
factor x asymptotically goes to zero as'/2.
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Appendix D. Photon distribution in the Gaussian state

In the most compact form the information on the photon distribufiém) in some mode (we
suppress here the mode index) is contained irgreerating function

[e¢]

G =) fmz"

n=0
For the most general Gaussian state it was given in [38, 39] (for a single mode):
_ 1 [zg1—2°g2
Gi) =16 12 ex <— |:—— D.1
(2) =[6(2)] Pl o e 8o (D.1)

where
G(2) = 3L +2)*+4UV — Y (L —2)*+2(U + V)(1— 27
D=1+2U+V)+4UV —Y? = 4G(0)
g0 = (P)*U + 1) +(§)*2V + 1) — 4p)(q)Y (D.2)
g1 =2(p)’(U+Y?+U + D +2)*(VZ+Y?*+V +2) —4(p) (@YU +V +1)
g2 =2(P)2(U+Y? = D +2(G)2(VZ+ Y2 = D) — 4PN YU + V).
If {p) = (g) = 0, then the probability (n) is expressed in terms of the Legendre polynomials:

see equation (5.1). Inthe generic c&ge) is related to the 2D ‘diagonal’ Hermite polynomials
[38]:

fny = 2O 1) (D.3)
where
Fo= f(0) = 2D "?exp(—go/D)
V2{(2V — 1)(g) — 2Y (p) +i[(1 — 2U)(p) + 2Y ()]}
2U+V)—4UV —Y2) -1
and 2x 2 symmetric matrixk has the elements

2 _ 1
Rui =R = (V= U —2iY) R12:R21:5[1—4(UV—Y2)].

The 2D Hermite polynomials are defined via the expansion [46]
1 > ajy'aj R)
exp| —=aRa+aRx | = Z H, ' (x1, x2) (D.4)
2 o m!n!
wherezx = (x1, x2), a = (a1, a). The properties of these polynomials were studied recently
in [39,43]. In particular, they can be expressed as finite sums of the products of the usual (1D)
Hermite polynomials. The corresponding formula for the probabilities reads [38]

_r A n o n S k nl - ) D5
f) = o<5> Z(Z) T = ozt - ®)| (D.5)

k=0

where
A=/ (U—-V)2+4y? S=4UV -Y> -1
_ @V +1)(q) —2Y(p) +i[(1 +2U)(p) — 2Y(g)]
N [2D(V — U - 2iy)]¥2 ’

The photon distribution function (5.1) can be simplified in the long-time limjt 1, when
the average number of created photdfs= 1 ~ (V +U)/2 exceeds 1. Then the mean-square
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fluctuation of the photon number has the same order of magnitude as the mean photon number
itself, /o, ~ +/2\/, and the most significant part of the spectrum corresponds to the values
n > 1. Using the Laplace—Heine asymptotical formula for the Legendre polynomial [47]

n+1/2
(7=
A 2mn(z2 — V4

one can simplify (5.1) for the fixed values of the invariant variancasdv as

P,(z) ~ n>1

N 1 2v — 1\"Y? 0.6)
fm~ Jrn( —u) <2v+l> '

provided the positive difference— u is not too small. Another approximate formula can be
used ifv > 1 butu ~ 1:

n < 8v2. (D.7)

fn) ~ V/2(2u — 12 e‘"/<2v)P,,< 2u )

Vu(2u + 1)(+D/2 NZT
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